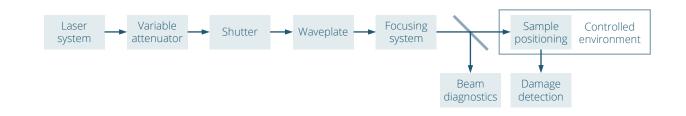


LASER-INDUCED DAMAGE THRESHOLD (LIDT) MEASUREMENT REPORT

S-ON-1 (ISO 21254-2) TEST PROCEDURE

SAMPLE: M0075640 LOT0058857 SU012564

Request from		
Address	Altechna Mokslininku st. 6A 08412 Vilnius Lithuania	
Contact person Purchase order	Aurelija Vasiljeva PU0016005-AVA	
Testing institute		
Address	UAB Lidaris Saulėtekio al. 10 10223 Vilnius Lithuania	
Tester Test date	Egidijus Pupka 2020-01-15	
Sale order Test ID	SO1618 E61LRK	
Specimen		
Name	M0075640 LOT0058857 SU012564	
Туре	PR Coating (S1 PR (R=65±2%) @ 2075-2105 (centered @ 2090 nm))	


Membrane box

Packaging

TEST EQUIPMENT

Test setup

Laser and its parameters

Q-switched, seeded Nd:YAG Type

Manufacturer InnoLas Laser II

Model SpitLight Hybrid with OPO

Central wavelength 2090.0 nm Angle of incidence 0.0 deg Polarization state Linear Pulse repetition frequency 100 Hz

Spatial beam profile in target plane Near Gaussian

Beam diameter in target plane $(1/e^2)$ $(181.9 \pm 5.9) \, \mu \text{m}$ Longitudinal pulse profile Single longitudinal mode

Pulse duration (FWHM) $(4.3 \pm 0.3) \text{ ns}$

4.5 %

Pulse to pulse energy stability (SD)

Energy/power meter

Manufacturer Ophir Model PE50-DIF-C Calibration due date 2020-07-01

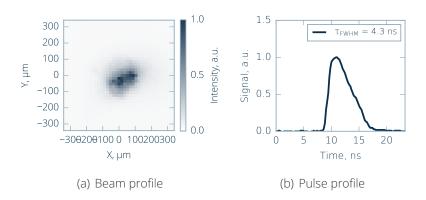


Figure 1. Laser parameters used for measurements.

TEST SPECIFICATION

Definitions and test description

Laser-induced damage (LID) is defined as any permanent laser radiation induced change in the characteristics of the surface/bulk of the specimen which can be observed by an inspection technique and at a sensitivity related to the intended operation of the product concerned. Laser-induced damage threshold (LIDT) is defined as the highest quantity of laser radiation incident upon the optical component for which the extrapolated probability of damage is zero. ¹

LID of the sample is investigated by performing a standardized S-on-1 test procedure.² LIDT value is determined by fitting experimental damage probability data with a model derived for a Poisson damage process assuming degenerate defect ensemble.³

Test sites		
Number of sites	208	
Arrangement of sites	Hexagonal	
Minimum distance between sites	600 µm	
Maximum pulses per site	1000	
Damage detection		
Online	Scattered light diode	
Offline	Nomarski microscope	
Test environment		
Environment	Air	
Cleanroom class (ISO 14644-1)	ISO7	
Pressure	1 bar	
Temperature	23 C	
Humidity	25 %	
Sample preparation		
Storage before test	Normal laboratory conditions	
Dust blow-off	None	
Cleaning	None	

¹ISO 21254-1:2011: Lasers and laser-related equipment - Test methods for laser-induced damage threshold - Part 1: Definitions and general principles, International Organization for Standardization, Geneva, Switzerland (2011)

²ISO 21254-2:2011: Lasers and laser-related equipment - Test methods for laser-induced damage threshold - Part 2: Threshold determination, International Organization for Standardization, Geneva, Switzerland (2011)

³J. Porteus and S. Seitel, Absolute onset of optical surface damage using distributed defect ensembles, Applied Optics, 23(21), 3796–3805 (1984)

LIDT TEST RESULTS

LIDT VALUES

Table 1: Estimated LIDTs from fiting model for sample M0075640 LOT0058857 SU012564.

Test mode	Threshold (Offline detection - microscopy) ⁴	Threshold (Offline detection - microscopy) scaled to 10 ns
10 ³ -on-1	$> 22.5 ^{+3.7}_{-3.7} \text{ J/cm}^2$	$> 34.1^{+5.6}_{-5.6} \text{ J/cm}^2$

DAMAGE PROBABILITY

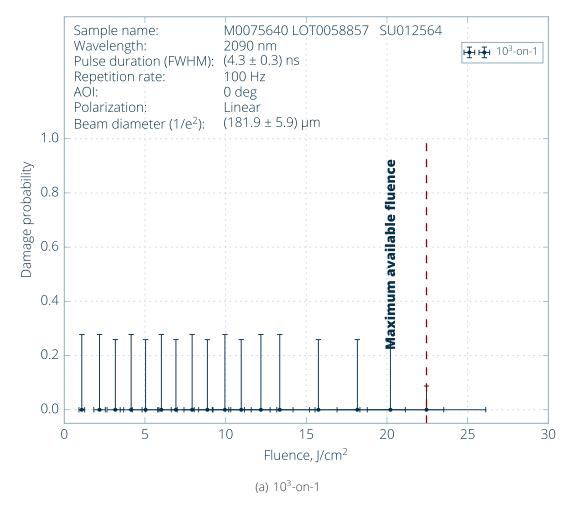


Figure 2. Damage probability plot.

TECHNICAL NOTES

TECHNICAL NOTE 1: No damages were found

No damages were found for this type of analysis, therefore, LIDT value could not be evaluated. LIDT value should be higher than maximum fluence value used in the test. This fluence value is written in the thresholds table.