LASER-INDUCED DAMAGE THRESHOLD (LIDT) MEASUREMENT REPORT

 S-ON-1 (ISO 21254-2)

 S-ON-1 (ISO 21254-2) TEST PROCEDURE

 TEST PROCEDURE}

SAMPLE: M0050867 LOT0045568 ID 63517

Request from	
Address	Altechna Mokslininku st. 6A 08412 Vilnius
	Lithuania Contact person Purchase order
Aurelija Vasiljeva	
PU0019033	

TEST EQUIPMENT

Test setup

Laser and its parameters

Type
Manufacturer
Model
Central wavelength
Angle of incidence
Polarization state
Pulse repetition frequency
Spatial beam profile in target plane
Beam diameter in target plane ($1 / \mathrm{e}^{2}$)
Longitudinal pulse profile
Pulse duration (FWHM)
Pulse to pulse energy stability (SD)

Q-switched, seeded Nd:YAG
InnoLas Laser
SpitLight Hybrid
532.0 nm
45.0 deg

Linear P
100 Hz
TEM00
(226.6 ± 2.8) $\mu \mathrm{m}$

Single longitudinal mode
(5.7 ± 0.3) ns
1.8 \%

Energy/power meter

Manufacturer	Ophir
Model	PE50-DIF-C
Calibration due date	$2021-06-01$

Figure 1. Laser parameters used for measurements.

TEST SPECIFICATION

Definitions and test description

Laser-induced damage (LID) is defined as any permanent laser radiation induced change in the characteristics of the surface/bulk of the specimen which can be observed by an inspection technique and at a sensitivity related to the intended operation of the product concerned. Laser-induced damage threshold (LIDT) is defined as the highest quantity of laser radiation incident upon the optical component for which the extrapolated probability of damage is zero. ${ }^{1}$

LID of the sample is investigated by performing a standardized S-on-1 test procedure. ${ }^{2}$
LIDT value is determined by fitting experimental damage probability data with a model derived for a Poisson damage process assuming degenerate defect ensemble. ${ }^{3}$

Test sites
Number of sites 209

Arrangement of sites Hexagonal
Minimum distance between sites $750 \mu \mathrm{~m}$
Maximum pulses per site 1000

Analysis information

Online detection
Offline detection
Software version

Scattered light diode
Nomarski microscope
e254241-41 bd8ff

Test environment

Environment	Air
Cleanroom class (ISO 14644-1)	ISO7
Pressure	1 bar
Temperature	21 C
Humidity	50%

Sample preparation

Storage before test
Dust blow-off
Cleaning

Normal laboratory conditions
None
None
${ }^{1}$ ISO 21254-1:2011: Lasers and laser-related equipment - Test methods for laser-induced damage threshold - Part 1: Definitions and general principles, International Organization for Standardization, Geneva, Switzerland (2011)
${ }^{2}$ ISO 21254-2:2011: Lasers and laser-related equipment - Test methods for laser-induced damage threshold - Part 2: Threshold determination, International Organization for Standardization, Geneva, Switzerland (2011)
${ }^{3}$ J. Porteus and S. Seitel, Absolute onset of optical surface damage using distributed defect ensembles, Applied Optics, 23(21), 3796-3805 (1984)

LIDT TEST RESULTS
 LIDT VALUE

10^{3}-on-1 $\quad 15.2_{-3.1}^{+1.6} \mathrm{~J} / \mathrm{cm}^{2} \quad 20.1_{-4.2}^{+2.2} \mathrm{~J} / \mathrm{cm}^{2}$ (scaled to 10.0 ns)

CHARACTERISTIC DAMAGE CURVE

Table 1: Estimated LIDTs from fiting model for sample M0050867 LOT0045568 ID 63517.

Figure 2. Characteristic damage curve.

DAMAGE PROBABILITY (ONLINE DETECTION)

(a) 10-on-1

(b) 10^{2}-on- 1

(c) 10^{3}-on- 1

Figure 3. Damage probability plots.

DAMAGE PROBABILITY
 (OFFLINE DETECTION)

(a) $10^{3}-\mathrm{on}-1$

Figure 4. Damage probability plot.

TYPICAL DAMAGE MORPHOLOGY (OFFLINE DETECTION)

Figure 5. Typical damage morphology: fluence $15.6 \mathrm{~J} / \mathrm{cm}^{2}$, damage after 4 pulse(s).

Figure 6. Typical damage morphology: fluence $40.6 \mathrm{~J} / \mathrm{cm}^{2}$, damage after 2 pulse(s).

TECHNICAL NOTES

TECHNICAL NOTE 1: Oblique incidence

According to the ISO 21254-2:2011 standard, for spatial beam profiling perpendicular to the direction of beam propagation and angles of incidence differing from 0 degrees, the cosine of the angle of incidence is included in the calculation of the effective area, which leads to correct evaluation of laser fluence at different angles of incidence (Figure 7).

Figure 7. Oblique incidence.

