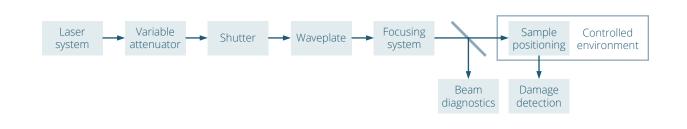
SO2271

LASER-INDUCED DAMAGE THRESHOLD (LIDT) MEASUREMENT REPORT

S-ON-1 (ISO 21254-2) TEST PROCEDURE


Sample: 72668 kaitintas

Request from	
Address	Altechna Mokslininku st. 6A 08412 Vilnius Lithuania
Contact person	Aurelija Vasiljeva
Inquiry ID	1385
Purchase order	PU0020630-AVA
Testing institute	
Address	UAB Lidaris Saulėtekio al. 10 10223 Vilnius Lithuania
Tester	Lina Vigricaite
Test date	10/02/2021
Sale order Test ID	SO2271 EQ2WZY
Specimen	
Name	72668 kaitintas
Туре	HR Dielectric Coating (HR (Rs>99,9%, Rp>99,7%) @ 343-355 nm, AOI 45°)
Dimensions	Ø25.4 x 5.0 mm
Packaging	Plastic box

TEST EQUIPMENT

Test setup

Laser and its parameters

Q-switched, seeded Nd:YAG
InnoLas Laser II
SpitLight Hybrid
355.0 nm
45.0 deg
Linear P
10 Hz
TEM00
(225.8 ± 2.5) μm
Single longitudinal mode
(5.4 ± 0.3) ns
0.9 %

Energy/power meter

Manufacturer Model Calibration due date

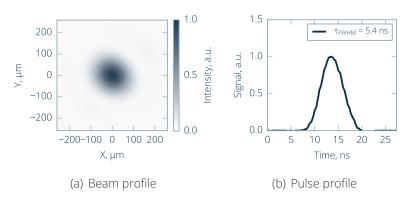


Figure 1. Laser parameters used for measurements.

TEST SPECIFICATION

Definitions and test description

Laser-induced damage (LID) is defined as any permanent laser radiation induced change in the characteristics of the surface/bulk of the specimen which can be observed by an inspection technique and at a sensitivity related to the intended operation of the product concerned. Laser-induced damage threshold (LIDT) is defined as the highest quantity of laser radiation incident upon the optical component for which the extrapolated probability of damage is zero.

LID of the sample is investigated by performing a standardized S-on-1 test procedure.² LIDT value is determined by fitting experimental damage probability data with a model derived for a Poisson damage process assuming degenerate defect ensemble. ³

207

Hexagonal

750 μm 1000

Number of sites Arrangement of sites Minimum distance between sites Maximum pulses per site Analysis information Online detection Offline detection

Offline detection Nomars	ed light diode ki microscope 5 - 53e7367
--------------------------	--

Test environment

Test sites

Environment	Air
Cleanroom class (ISO 14644-1)	ISO7
Pressure	1 bar
Temperature	21.5 - 22.1 C
Humidity	11.6 - 13.0 %

Sample preparation

Storage before test Dust blow-off Cleaning Normal laboratory conditions Compressed air Isopropanol

¹ISO 21254-1:2011: Lasers and laser-related equipment - Test methods for laser-induced damage threshold - Part 1: Definitions and general principles, International Organization for Standardization, Geneva, Switzerland (2011)

²ISO 21254-2:2011: Lasers and laser-related equipment - Test methods for laser-induced damage threshold - Part 2: Threshold determination, International Organization for Standardization, Geneva, Switzerland (2011)

³J. Porteus and S. Seitel, Absolute onset of optical surface damage using distributed defect ensembles, Applied Optics, 23(21), 3796–3805 (1984)

LIDT TEST RESULTS

LIDT VALUE

10³-on-1

 $3.38 \substack{+0.27 \\ -0.72} \mathrm{J/cm^2}$

CHARACTERISTIC DAMAGE CURVE

Table 1: Estimated LIDTs from fiting model for sample 72668 kaitintas.

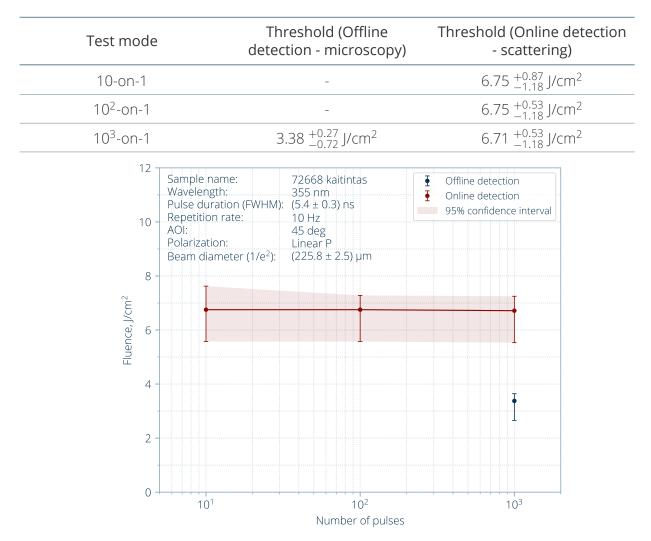
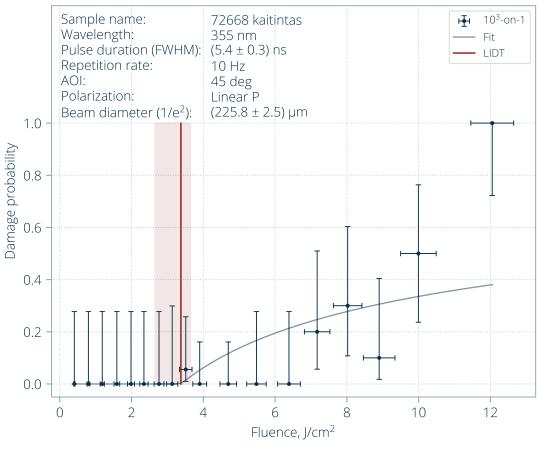



Figure 2. Characteristic damage curve.

DAMAGE PROBABILITY (OFFLINE DETECTION)

(a) 10³-on-1

Figure 3. Damage probability plot.

TYPICAL DAMAGE MORPHOLOGY (OFFLINE DETECTION)

Figure 4. Typical damage morphology: fluence 3.54 J/cm², damage after 698 pulse(s).

before test	after exposure
	 250 μm

Figure 5. Typical damage morphology: fluence 12.1 J/cm², damage after 28 pulse(s).

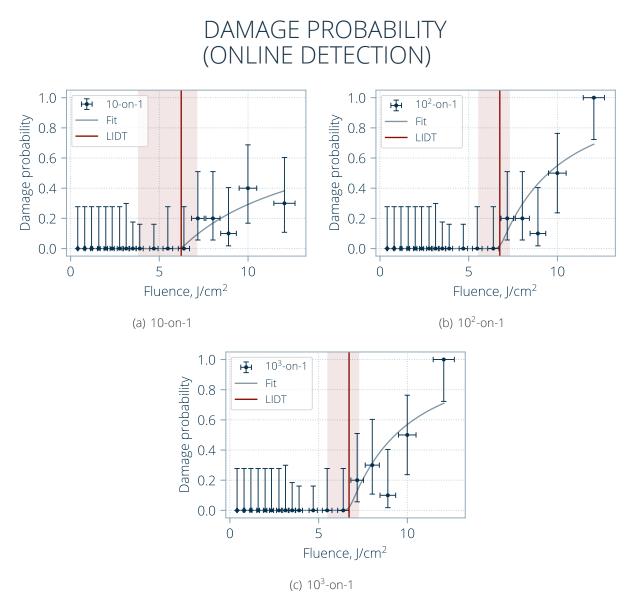


Figure 6. Damage probability plots.

TECHNICAL NOTES

TECHNICAL NOTE 1: Oblique incidence

According to the ISO 21254-2:2011 standard, for spatial beam profiling perpendicular to the direction of beam propagation and angles of incidence differing from 0 degrees, the cosine of the angle of incidence is included in the calculation of the effective area, which leads to correct evaluation of laser fluence at different angles of incidence (Figure 7).

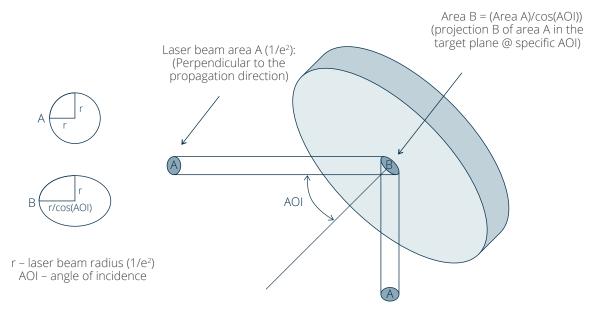


Figure 7. Oblique incidence.